85 research outputs found

    Publishing Microdata with a Robust Privacy Guarantee

    Full text link
    Today, the publication of microdata poses a privacy threat. Vast research has striven to define the privacy condition that microdata should satisfy before it is released, and devise algorithms to anonymize the data so as to achieve this condition. Yet, no method proposed to date explicitly bounds the percentage of information an adversary gains after seeing the published data for each sensitive value therein. This paper introduces beta-likeness, an appropriately robust privacy model for microdata anonymization, along with two anonymization schemes designed therefor, the one based on generalization, and the other based on perturbation. Our model postulates that an adversary's confidence on the likelihood of a certain sensitive-attribute (SA) value should not increase, in relative difference terms, by more than a predefined threshold. Our techniques aim to satisfy a given beta threshold with little information loss. We experimentally demonstrate that (i) our model provides an effective privacy guarantee in a way that predecessor models cannot, (ii) our generalization scheme is more effective and efficient in its task than methods adapting algorithms for the k-anonymity model, and (iii) our perturbation method outperforms a baseline approach. Moreover, we discuss in detail the resistance of our model and methods to attacks proposed in previous research.Comment: VLDB201

    Harvester:Influence Optimization in Symmetric Interaction Networks

    Get PDF

    NetLSD: Hearing the Shape of a Graph

    Full text link
    Comparison among graphs is ubiquitous in graph analytics. However, it is a hard task in terms of the expressiveness of the employed similarity measure and the efficiency of its computation. Ideally, graph comparison should be invariant to the order of nodes and the sizes of compared graphs, adaptive to the scale of graph patterns, and scalable. Unfortunately, these properties have not been addressed together. Graph comparisons still rely on direct approaches, graph kernels, or representation-based methods, which are all inefficient and impractical for large graph collections. In this paper, we propose the Network Laplacian Spectral Descriptor (NetLSD): the first, to our knowledge, permutation- and size-invariant, scale-adaptive, and efficiently computable graph representation method that allows for straightforward comparisons of large graphs. NetLSD extracts a compact signature that inherits the formal properties of the Laplacian spectrum, specifically its heat or wave kernel; thus, it hears the shape of a graph. Our evaluation on a variety of real-world graphs demonstrates that it outperforms previous works in both expressiveness and efficiency.Comment: KDD '18: The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, August 19--23, 2018, London, United Kingdo

    Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-Memory Column-Stores

    Get PDF
    Modern business applications and scientific databases call for inherently dynamic data storage environments. Such environments are characterized by two challenging features: (a) they have little idle system time to devote on physical design; and (b) there is little, if any, a priori workload knowledge, while the query and data workload keeps changing dynamically. In such environments, traditional approaches to index building and maintenance cannot apply. Database cracking has been proposed as a solution that allows on-the-fly physical data reorganization, as a collateral effect of query processing. Cracking aims to continuously and automatically adapt indexes to the workload at hand, without human intervention. Indexes are built incrementally, adaptively, and on demand. Nevertheless, as we show, existing adaptive indexing methods fail to deliver workload-robustness; they perform much better with random workloads than with others. This frailty derives from the inelasticity with which these approaches interpret each query as a hint on how data should be stored. Current cracking schemes blindly reorganize the data within each query's range, even if that results into successive expensive operations with minimal indexing benefit. In this paper, we introduce stochastic cracking, a significantly more resilient approach to adaptive indexing. Stochastic cracking also uses each query as a hint on how to reorganize data, but not blindly so; it gains resilience and avoids performance bottlenecks by deliberately applying certain arbitrary choices in its decision-making. Thereby, we bring adaptive indexing forward to a mature formulation that confers the workload-robustness previous approaches lacked. Our extensive experimental study verifies that stochastic cracking maintains the desired properties of original database cracking while at the same time it performs well with diverse realistic workloads.Comment: VLDB201

    Mechanistic characterization of p62 as a driver of melanoma metastasis

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 07-07-2017Esta tesis tiene embargado el acceso al texto completo hasta el 07-01-201

    VERSE: Versatile Graph Embeddings from Similarity Measures

    Full text link
    Embedding a web-scale information network into a low-dimensional vector space facilitates tasks such as link prediction, classification, and visualization. Past research has addressed the problem of extracting such embeddings by adopting methods from words to graphs, without defining a clearly comprehensible graph-related objective. Yet, as we show, the objectives used in past works implicitly utilize similarity measures among graph nodes. In this paper, we carry the similarity orientation of previous works to its logical conclusion; we propose VERtex Similarity Embeddings (VERSE), a simple, versatile, and memory-efficient method that derives graph embeddings explicitly calibrated to preserve the distributions of a selected vertex-to-vertex similarity measure. VERSE learns such embeddings by training a single-layer neural network. While its default, scalable version does so via sampling similarity information, we also develop a variant using the full information per vertex. Our experimental study on standard benchmarks and real-world datasets demonstrates that VERSE, instantiated with diverse similarity measures, outperforms state-of-the-art methods in terms of precision and recall in major data mining tasks and supersedes them in time and space efficiency, while the scalable sampling-based variant achieves equally good results as the non-scalable full variant.Comment: In WWW 2018: The Web Conference. 10 pages, 5 figure

    Content Recommendation for Viral Social Influence

    Get PDF

    Spectral Graph Complexity

    Full text link
    We introduce a spectral notion of graph complexity derived from the Weyl's law. We experimentally demonstrate its correlation to how well the graph can be embedded in a low-dimensional Euclidean space.Comment: BigNet workshop at the Web conferece'201
    corecore